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A theory is presented for polymer flow that is in qualitative agree- 
ment with experiment. The theory is based on the fact [1, 2] that the 
flow rate does not have a single-valued relation to the pressure dif- 
ference, as well as on the compressibility of the polymer, which ap- 
pears very prominently in the source vessel. 

There is a fairly extensive body of literature on melt fracture, in 
which the polymer emerging from the capillary ceases to be smooth 
at pressure differences above some critical value. 

There are several experimental studies [1-3] that give a clear 
qualitative picture of the effect for certain particular cases. These 
tests were performed under isothermal conditions with a constant-flow 
viseometer, which is an axially symmetric system of cylinders joined 
in series (a large reservoir of radius R and length L, together with a 
small capillary of radius u and length l, with u << R and I << L). A 
piston moves at a constant speed U into the reservoir. The pressure 
at the capillary inlet and the polymer flow rate are measured as func- 
tions of time. The melt emerges in jerks for some range U1 < U < Uz, 
and the recorded pressure varies at the same time; the extruded ma- 
terial shows obvious changes in diameter. 

Figure 1 shows the integral flow curve for a capillary viscometet 
[1-3], in which r = pa /2 l  is the shear stress at the capillary wall, 

= 4O/ga s is the mean integral shear rate in the capillary, p is the 
pressure at the capillary inlet (less atmospheric pressure), and Q is the 
volume flow rate. The plot of v against ~ in Fig. 1 is essentially the 
flow rate against pressure for a given material and capillary. The 
range yt to Yz constitutes one to two orders of magrkitude in ~ for a 
polymer, whereas the range from rl to r2 is around 10% of r2. This 
hysteresis region on the curve can thus be overlooked, although a 
"horizontal" region may be noted. 

The hysteresis is often ascribed to slip of the melt along the capil- 
lary wall. A simple analysis gives the following reIation of r to r, 
the slip rate u(r), and the flow function ] ( r ) ,  which defines the non- 
Newtonian behavior (T is temperature): 

4 
T) -~-,-~- ~ / (x, T) x'2dx=~s'~-Tm" . (1) ~ ' = ~ u ( ~ ,  

o 
Formula (1) may be used by varying a with r = const to distinguish 

the shear speed Ym from the speed Ys due to wail slip. It is found [2] 
that Ys can account for 70-80~o of y, so wail slip dominates the oscil- 
lation mechanism* [4]. Use of graphite capillaries [5] also confirms 
wall slip, as the extruded material is streaked with graphite. The 
maximum in r(~) is readily explained, as it is entirely due to a max- 
immn in r(u), which is familiar from the theory of friction of highly 
elastic materials. A molecular model has been proposed [6] for such 
friction. Here we take r(~) as given. 

It has also been stated [4] that the r(~) curve (Fig. 1) is almost 
independent of the absolute hydrostatic pressure, which at first sight 
conflicts with known relationships to the normal pressure for the fric- 
tion of highly elastic materials. However, the relationship for solid 
polymers is due to increase in the area of actual contact as the normal 
pressure increases. A polymer flowing as a liquid has an actual area 
of contact almost equal to the area of nominal contact, which explains 
why the parameters of the wall slip are independent of the hydrostatic 
pressure. 

Tests have been performed [3] with molten high-density polyeth- 
ylenes of various molecular-weight distributions. As <Mw> / <Mn>=k 
increases, where M w is the weight mean of the molecular weight and 
Mn is the number mean, the section abcd in Fig. 1 decreases in size, 
and it is not experimentally detectable for k > 30. As k is a measure 
of the width of the molecular-weight distribution [7], this shows that 
the maximum in r(u) is suppressed as that width increases. 

The oscillations [1-8] represent motion along the path abcd in 
the rG7 phase plane in the direction shown by the arrows in Fig. 1 
if 7' = 4UR2a -s lies between it and ~2 (this rate is determined by U). 

This behavior can occur for an incompressible material only if very 
large cavities are formed in the capillary. A mote reasonable hypoth- 

esis was proposed [1,2] when it was shown that the varia~on in 

during the oscillation is due to the compressibility of the polymer in 

the reservoir. Although the bulk strain is only i-2% at pressures of 
~100 atm (such as actually occur), this volume change in the reser- 
voir may be comparable with the volume of the capillary. 

The mass-balance equation for the system is 

t (2) 

~-p(x, t) d v @  ~p(x)t)dv~po(Vo~-~)o)-- po.~Q(~)d~. 
V(t) vo 0 

Here V(t) is the volume of polymer in the reservok under the pis- 
ton, V0 = ~rRZL is the initial volume under the piston, vo = ~azz is the 
capillary volume, 00 is the density of the polymer in the undeformed 
state (t = 0), and Q(t) is the polymer flow rate at the exit from the 
capillary. It is assumed that the polymer emerges with the density p0. 

The problem will subsequentIy be considered in the hydraulic ap- 
proximation, the dei.sity distribution in the capillary being taken as 
the mean of P0 and the density p(t) in the reservoir; the spatial dis- 
tribution of the density in the reservoir is also neglected. Then we get 

from (2) the approximate expression 

o 

But V(t) >> v0 almost up to the end of the extrusion:, and so we have 

(3) 
f~ 

p (t) v (t) ~ poVo - ,% .1 Q (~) d~. 
o 

we now restrict consideration to relaxation oscillations (fafl'ly slow 
ones, as implied by [1-3]) and neglect all fast processes, as well as 
viscous friction in the reservoir, since the dissipation there is less than 
that in the capillary by orders of magnitude. 

Further, we have 

V(t) = V o - - ~ B 2 U t +  JP, e ~ - - t + p ( t ) / p o =  i3P, (4) 

Here J is the compliance of the reservoir walls and I~ is the com- 
pressibility of the polymer, which is about 10-1~ cmZ/dyne for liquid 
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Fig. 1 

*It has been asserted [4] that the falling section in :Fig. I may be 
due to a falling section inf( r ) ,  but this is incorrect. It: is readily shown 
tlnat such behavior in f(~') leads to a region of hysteresis in ~(r), both 
branches of the hysteresis curve rising monotonically. 
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polymers (so s << 1 at normal extrusion pressures) and which decreases 
as i / T  as T increases [8]. 

Then (3) and (4) give m a relation between p and Q, which we 
differentiate with respect to t ime and replace p and Q by r and r to 
get 

d~ z~a s x'o (T," - -  T') + T, ' r  
d t - -  4V0 t + 3 . - - U t / L  ' 

1: o = a(2/~) -1, ~ / =  4Q(zaa) - l ,  

y," = 4URPa -a, L = J~-lVo-i. (5) 

Here the term quadratic in r has been neglected as it contains 
the extremely small  factor/13. If va(~, - ~) >> ~ . r ,  we have from (5) 
that 

dr  ga a ro (T." - -  T') (6) 
- ~ - ~  4Vo I - ~ - I - - U t / L  " 

This expression has been derived [0] from semiempirical  consid- 
erations and has been used to find dr /d \  at the start of the cycles, 
which agreed to within 10% with the observed values. 

To (5) we must add a theological equation relating r and ~, which 
with the  above approximatiom can be written as 

d~ (7) 
oW +~=9(~'). 

Equation (7) takes account of shear relaxation; in general,  0(~). 
This equation will be applied to segments ab and cd (Fig. 1), so we 
approximate the relation as follows: 

{0~ (H < ~" < ~') (8) 
0 (~') = 02 (~" < ~" < ~;)" 

Similarly, we approximate ~o(~) on parts ab and ed by two straight 
lines: 

~ (~'-- ~'o') + r2 (Zp" < T" < H )  
(~') = hi2 (7" -- H) + r~ (~" < ~" < H) 

"~1 -- 178 rx -- re 

We solve (7)-(9) for ~ via the two-valued function ~0-1(~) and 
substitute the  result into (5) to get  equations for r:  

[% + ~ ~ = 2i-+ \ - - -~- -o  j 

= ~1~ ( T , '  - -  "r~') + ~ ,  

which describe r(t) for motion on segments ab and cd in the ~'-~ 
phase plane. In (i0) we make  allowance for the transient nature of 
the oscillatory motion. 

Let the point in the r-~ phase plane lie at a at t ime \0(Fig. 1). 
We introduce dimensionless variables and parameters: 

t - -  t o  r rl 
~=-NG'  Y = W '  v o = ~ - > i ,  

a k ~ s k  q- 

4Vo~lkSkU ~lkT ." /1 k 
b~= ~taavo L , c ~ = t - -  ro'~ * , d ~ = l + - ~  (T,'--T~') 

si = I (o- ab), s~ = 02 / O1 (on cd), (11) 

where we have used the ~k, Ok' and Yk of (10); this enables us to write 
(10) in the form 

dy 
(al~ -- b~) ~- q- el~y =dlr (12) 
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Let g~) be the phase of cycle n corresponding to y(g) increasing 
from y = i to y = y0 (segment ab in Fig. 1), and let ~(z) be the phase 
of cycle  n corresponding to y(g) decreasing from y = Y0 to y = 1 (cd 

- 2 , �9 

in Fig. J.); rhea gn = ~(n t) + ~(n ) is the period of cycle n. 
Let y0)  denote the rmng  part of yn(g) and ~(z) the falling part in 

�9 t t  in 
period n. Then we have the natural conditions 

n--I 

I ~ = 1  

Yn (~) = Yo for ~ = ~_~ + ~(t)  (~  = 0), (13) 

and the solution to (12) that satisfies these is 

- -  ~ ' - - t  ' 

y ( 2 ) _ _  d ~  - -  [ . d~ ap--bp~ 
a~ -- / '2 ( ~ - i  + ~o-)  ) 

Era-1 q- ~n (1) < ~ < ~n" (14) 
i 

We always have r0 >> 7/ky., if Yl < Y* < ~;2 in real viscometers of 
capillar, t~ y type., then (11) implies that ct.. . . . . .  > 0. and so (14~ ~ives that 
for y~ j to rise we must have dl > el, which (11) shows is always the 

l i  t 2 )  - 
case�9 From the second formula in (14) we have that for y~ to de- 
crease we must have y~). We substitute the y0, c2, and dz of (11) 
into this inequality to get an equivalent condition for decrease in y(nZ): 

~," < 73"(t + r, / r0)-L 

As rl  << To in a real capillary viscometer, the latter condition may 
be considered as obeyed i f y l  < y. < yp. 

Then (13) and (14) give us a recurrence relation for the dimension- 
less phases of the oscillation: 

n - - 1  

~rl'(l' = [ ~ -  ( C t -  dl tb:tiel~l ("~'~- ~1 ~/~- ~.(1>) , \ C l y O  -- d$, j (15) 

which shows that the period increases linearly with t ime,  which agrees 
with experiment [2, 3]. The expression for the dimensionless period of 
cycle n is readily derived from (15) as 

( d ,--  CiYo~ nb'/c~ (c~- -d~  ,~ nb,lc, 

\ di- -c l  J J \ ~ ]  + 

q- ~ [i -- k ~ ]  ]J (n = 0 ,  l, 2 . . . .  ). (16) 

Consider now how the period is related to ~., the nominal shear 
rate averaged over the capillary diameter�9 The piston in a real capil- 
lary apparatus moves very slowly, so the period varies only very 
slightly and is almost constant over a fairly long interval; this is so 
only when b k << 1, so it is sufficient to consider the ~, dependence of 
gl for t)i, bz << 1, for which we have 

Fig. 2 



Fig. 3 
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Fig. 4 

Figures 3 and 4 show the general forms of ;(t) and r in the oscil- 
lation range Yl < Y, < ~2; they agree entirely with the observed curves 

[2, 31. 
There are no oscillations under these conditions (U = const) if y. < 

< yl or ~, > y2; then (i0) implies that r(t) increases monotonically if 
y, < ~I or ~, > y3, while if y2 < y, < Yz there is one peak in "r(t) and 
the function passes over to a steady state for t --~ ~ .  This also agrees 
exactly with experiment [2]. 

Wall slip disrupts heat  transfer to the capillary and may cause 
various secondary effects related to the structure of the mel t  (e. g . ,  
crystallization of tubber-like polymers by orientation near the wall); 
however, it has been shown [2] that these effects can be neglected to 
a few percent. 

This theory completely confirms the hypothesis [2] as to the causes 
of oscillation for U = const; however, unstable flow conditions can 
occur also for p = const (in constant-pressure capillary viscometers). 
Here the instability cannot be described within the framework of this 
fairly crude theoretical scheme, and the causes of this form of in-  
stability remain an open question. 

I1/dk'% -1 - ~  1, ck ~" i ,  Ut o L -x < ~  t .  

Then we pass formally to the l imit  b k --~ 0 in the expression for ~1 
in (16) and substitute for a k and d k from (11) with c k --~ 1 to get  an 
approximate expression for the dimensional oscillation period br = 81gl 

4Vo (~ - -  ~2) (1 § k)] ";," - -  To" 

n a [ ' _  4Vo('c1~'r  "fs'-- T*" (17) 
L ~" + ~ - T = -  ~v)~ ] ~n ~ .  

Figure 2 shows the dependence of the circular frequency w : 2~rT[ 1 
on ~, implied by (17), which corresponds with experiment [2, 3] except 
at the end points y, = Yl and ~, = 7z, where (17) is not accurate and 
(16) should be used. The first term on the right in (17) is an approxi- 
mate  expression for the first phase T~ i) of the cycle, while the second 
term is an expression for the second phase T! z). Then (17) implies that 
Tfl) /Tf z) varies monotonically with i* in such a way that T~ t) > T~ 2) 

when ~, is close to Yl and Tf ~) < Tf z) when f,, is close to ~;z. This re-  
sult also agrees entirely with the above experimental  results. 
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